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1. INTRODUCTION AND NOTATION

Let A denote a grid or partition of the unit interval 1= [0, 1], i.e.,

A:O=xo<x, < ... <x" ,<x,,= I

The maximal mesh length is abbreviated by

(11)0). (1.1 )

h=h(A)= max hi'
I oS i ~_:; n

hi=Xi~Xi ,.

As usual, by Sp(2, A) we denote the space of quadratic spline functions
determined by the above partition LI. Namely. S E Sp(2, A) if and only if the
following conditions are satisfied:

(i) In each subinterval [Xi I. X,] (i= 1.2....,11) S is a polynomial of
degree 2 or less,

(ii) sEC1(l).

Let 11'llx stand for the sup-norm on the interval I and let w(f; . ) denote the
modulus of continuity off E C(l).

Now. when IE C(l) is a given function, we are interested in conditions
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assuring convergence of the corresponding quadratic spline interpolants to
f as h ---> 0. If the nodes of interpolation are chosen according to

x o, ~(.'(o + x, ), ... , ~(xn ,+ xn), Xn

then Marsden [3 J shows uniform convergence for alll E C(J) (see also de
Boor [I J and Kammerer, Reddien, and Varga [2J). This is even true for
the more general nodes

Xo,I1.,xo+(I--(J.,)xl, ... ,rJ.nXn ,+(I-'Y.")x",x,,

if only l-fJ~(J.{~fJ (i=1,2, ...,n) with a constant [JE[!,J2/2) (see
Schmidt and Mettke [8 J). In these cases the determination of the
quadratic spline interpolants requires the solution of a tridiagonal system
of linear equations.

The interpolation problem

(i=O,I, ... ,n),
( 1.2)

(mo given real number) possesses also a unique solutions E Sp(2, L1) and,
moreover, .I' can be computed successively on the subintervals [x(j, x I J,
[x" x2 J, ..., [x" "xnJ, due to the formula

m (+ I + m i f( x, + , ) - f( x ()

2 h,t'
(i = 0, 1,... , n - I ) (1.3 )

where mi=s'(xJ For the splines .I' given by (1.2), Mettke, Pfeifer, and
Neuman [5J prove the boundedness of Ilf-sil y provided that f is
Lipschitz-continuous and the grids L1 are not so far from the equidistant
partitions. Furthermore the first author of this paper derived an explicit
expression for the norm of the corresponding spline interpolation projector
L;l if m o = 0, namely,

(1.4 )

(see [6 J). The operator norm 11'11 is defined as

IIL~II = sup( IIL~fll , : Ilfll, ~ I J.

Since for any set of partitions L1 with h ---> °the norms II L ~ II are unbounded,
there exist functions f E C(f) such that

sup III - .I'll f. = 'x),
1

(1.5 )
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and the set of these functions I is dense in C(l). This statement is an
immediate consequence of the famous Banach-Steinhaus theorem for
which one is referred, e.g., to Wloka [9]. The unboundedness of certain
quadratic spline projectors was also established by Meinardus and
Taylor [4].

The plan of the paper is as follows. In Section 2 we extend formula (1.4)
to the spline operator L~ described by the interpolation scheme (1.2) with
arbitrary mo. It turns out that rna is of no relevancy with regard to the
behaviour convergence of these splines. In Section 3, by means of the
derivatives m i , we derive conditions that guarantee uniform convergence of
s to I as h ---+ 0. These results may also be useful if one is looking for a
divergence example. In the final section we introduce a new space Sp(2, <5)
of the quadratic splines where now A c <5. We show that there are quadratic
splines associated with the interpolation scheme (1.2) which are uniformly
convergent to the interpolated function I as h tends to zero. Because the
interpolation is restricted to the grid A these splines s E Sp(2, <5) are not
uniquely determined. For further results in this direction see the report [7].

2. NORM OF THE SPLINE OPERATOR L71

With regard to the interpolation scheme (1.2) we introduce the quadratic
spline operator L~: C(l) x R 1

---+ Sp(2, iJ) in the manner

(L~C{, mO))(x i ) = I(x;l

(L~U; mo))'(xo) = m o,

(i = 0, I,... , n),
(2.1 )

where f E C(l) and rna E R '. This is a slightly extended version of the spline
projector L ~ treated in [6]. The space C(l) x R 1 is endowed with the norm

IIU; mo)11 x = max{ lilli" Imol}·

Thus, C(l) x R 1 is a Banach space.
The main result of this section reads as follows.

THEOREM 2.1. Let L~ he the spline operator uniquely determined hy the
interpolatory conditions (2.1). Then

(
1 ill)

II L7111 = 1 + max hi -4+ I - .
1 -s: l-S: n ;= 1 hi

(2.2)
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Prool In order to prove (2.2) we use the so-called fundamental splines
Sj E Sp(2, j) (j = 0, 1, ... , n + 1). These are such that

(i=o, 1, ... ,n;j=O, 1, ...,n+l)

where as usual (j,/ stands for the Kronecker symbol. Moreover,

(j=o, 1,... ,11),

Any s = l~(f; !no) can be expressed in terms of the unique Sj in the manner

n

s(x)= I f(X/),I)X)+!nOSI1+1(X)
/-=()

(x E /). (2.3)

Explicit formulae for .1'/ (j = 0, I, ..., 11) have been derived in [6],

SJx) = 0,

2(xl+ I - x.·)(X - XI) (X - XI)
2

=1+ - --- ,
hjhl " 1 hi j I

with

(j=0,1, ... ,n-1;I:
o

:=0} (2.5 )

In addition, when using (1.3) we get

It is easy to check by means of (2.3) that

where

!I t I

;1"21(X) = I IsJx)1
1- 0

(XE f)
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denotes the Lebesgue function of [2j' Now taking into account (2.4), (2.5),
and (2.6) we get for x, 1 ~x~x,

i 2:

,1:1(x) = L IsJx-)I + ,Ii I(X) + S,(X) + 1.1'/1 I 1(x)l.
i~()

Straightforward calculations yield

Hence the assertion (2.2) follows immediately. I
Making use of (1.4) and (2.2) we arrive at

COROLLARY 2.2. 7 -0
For the spline operators LA and L ~j we have

(2.7)

Thus, the norms II L~ II are unbounded on a set of grids Ll if and only if
the norms II L ~ II are unbounded. Therefore, the Banach-Steinhaus theorem
allows the conclusion (1.5), also for the spline interpolants (1.2) with
ma =I- O.

Let us close this section with the following essential

PROPOSITION 2.3. For any set of partitions Ll with h(Ll) -> 0 the norms
II L~ II are unbounded. Therefore a function f in C(I) and a number mo exist
such that

Proof Suppose that the norms II L:1 11 are bounded, i.e.,

IIL~II ~M.

In view of (2.2) this implies

(i = 2, 3, ... , n).

Thus, starting with h 1 ~ h and proceeding by induction we obtain
immediately

M i 'h
h .oS: -----:-,------,
'~(I+M)'

(i=2, 3,... , n).
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Now, because of hi + h2 + ... +h" = 1 it follows that

l M (M)2 Jl,:;;h+Mh 1+--+ -- + ... =h(l +M+M2
).

l+M l+M

This contradicts with h = h(J) ~ O. The proof is complete. I

3. CONVERGENCE CONDITIONS BY MEANS OF THE DERIVATIVES m i

In this section we derive sufficient convergence conditions formulated by
means of the derivatives

mi=s'(x,) (i = 0, L..., n) (3.1 )

of the spline interpolant s E Sp(2, J). We assume that s satisfies the inter
polatory conditions (1.2). For Xi J ,:;; x':;; Xi the spline interpolant s may be
written as

. (X-X i _ I )2
s(x)=r(x)+f(xi 1):= 2h mi

1

(~_ (Xi~',Xf) m, I'(ox,+ 2 2h I" I +, 1 J)'
1

(3.2)

where the m's satisfy the consistency relations (1.3). Now we establish a
series of partial results which lead to the main result of this section. These
are contained in the following three assertions.

ASSERTION 3.1. Let Im i II,:;; c, Imil,:;; c. Then for x , _ I':;; x':;; Xi we have

If(x) - s(x)1 ,:;; ch + w(f; h).

Prool For Xi I':;; x,:;; Xi the estimates

(3.3 l

(3.4 l

hold true. Th us, we get by (3.2 land (3.4 l

If(x)-s(xll':;; Ir(xll + If(xl-f(x i IlI,:;;ch+w(f;hl
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ASSERTION 3.2. Let m i 1m i ~ O. Then for Xi 1 ~ X ~ Xi we get

If(x) - s(x)1 ~ 2w(f; h).

Proof: Making use of (3.2), (3.4), and (1.3) one obtains

305

(3.5)

The following properties of the quadratic r will be employed in the
sequel:

r(x i 1)=0,

h
r(xi)=--i(mi+m, 1)=f(xJ-f(x i I), (3.6)

for r'(.x,) = O.

Further we introduce two sets K~ and L~, where a ~ 1 is a large but fixed
real. These sets are cones with vertices at the origin and they are defined in
the following way:

{ F+1 ~ }K~:= (p, q)ER2
: - v-;--a-p<q< - V-;--a- P /\ p>O ,

{
o~ F+1}L~:= (p, q) E R~: - V-;--a- p < q < - V----;--:x- p /\ P < 0 .

jq

~ \ i
.
~'.\

"'..'.\.
I'\:.\~

p

\ ~
\ "'..

\ ~

,

FIG. 1. The set (K,uL')\Q, .. Q,. : K,. ---: L,.
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It is obvious that K, and L, lie in the fourth and second quadrants, respec
tively (see Fig. 1).

Now we state and prove the following

ASSERTI()~ 3.3. 1j"1n, 11n,<Oand(ln, l,m,)¢K,uL"then

1/(\) .... l'(x)l:s; (:x + I) w(j; h) (3.7 )

Proo/ We derive (3.7) in the case when (tn, I' m,l ¢ K, but lies in the
fourth quadrant. Dual arguments, which we omit, give the thesis when
(In, I' In,) ¢ L, but lies in the second quadrant. In order to establish (3.7)
in the case under consideration assume at first

(3.8 )

Hence we get:xm; :S; (:x - I) In; J' In; J:S; :x(m; I - In;), and

Combining this result with (3.6) leads us to r(.\:,):s;:xr(xJ Since r(x, d=O,
r(x,) > 0, we have O:s; r(x):s; r(.\:,) for x, I:S; x:S; x, and in consequence

o:S; r( x) :S; :xr( x,) :S; :xw(j; h).

Making use of the formula (3.2) one gets the desired results in the case
(3.8 ).

Assume next

ffi·+1
m·< ._. --In <01-"":::: I I .

:x
(3.9)

Hence we obtain successively :xm; ~ (:x + I ) m; I' m; I:S; -:x(m; I '- nI;),
,

In; I
0< :S; -:X(In, 1+ mJ.

In, I-In,

Therefore, according to (3.6), we arrive at 0 < r(.\:,):s; -:xr(x,) = :xlr(x,)I·
Thus Ir(x)1 :S;:xIr(x,)1 :S;:xw(j; h) provided x, I:S; x:S; x,. Now taking into
account (3.2) we obtain the thesis in the case (3.9). This completes the
proof. I

Before presenting the main result of this section we introduce the square

where c is a large but fixed real (see Fig. I ).
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THEOREM 3.4. For given f E: C(l), III 0 E: R I let s E: Sp(2, .1) he the spline
interpolant satish'ing (1.2), and let 111, = s'(xJ 1/

for i = 1, 2, ... , n,

then

Ilf - s II 'l. ~ ch + ('l. + 1) w(/ h).

Prool Combine the Assertions 3.1-3.3. I

4. CONVERGENCE OF SPLINES ON GRIDS WITH ADDlTlONAL KNOTS

As in the previous sections, let A be the partition (1.1 ) of the unit inter
val 1. For our purposes we introduce additional knots t i E: (Xi I' Xi) and
also define a new partition b of 1 as

(4.1 )

In this section we work with the space Sp(2, b) instead of Sp(2, A). It
should be noted that SE: Sp(2, b) is not uniquely determined by the inter
polatory conditions (1.2) imposed only on .1. Nevertheless it can be shown
that there exist always splines S E: Sp(2, ()) satisfying (1.2) which converge
uniformly to the interpolated function f E: C( 1) as h ---> 0.

To this end, we employ the B-splines M, of order 2, where

U= I, 2, ... , n). (4.2)

Here as usual x + = max {O, x} and [p" p, + I ' Pi +:,] g denotes the second
order divided difference of the function g at the points Pi' Pit I' Pi I :,.

Further let

For the reader's convenience we recall that

(i = I, 2, ... , n). (4.3 )

(x-,X i I):'

(I - i'i) h;
(Xi-X):'

= I - . ,
A,Ir;

=1

for x~x, I'

for x, I~X~I"

for x?'x" (4.4 )
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where )"i E (0, I) is determined by I, = )"iX i I + (I - A;) Xi' Of course, we
have C, E Sp(2, (») U= 1,2,..., n). Now we define the function s in the man
ner

n

s(x)=f(xo)+(x-xo)mo + I (/(x/)-f(x/ d-h/mo)C)x)
/ I

(X E f).

(4.5)

It is obvious that s E Sp(2, (»). Further properties of this spline s are sum
marized below.

ASSERTIOl\i 4.1. The spline function s E Sp(2, (») defined by (4.5) is such
Ihal

s(x i )=f(x;)

S(I;) = AJ(Xi I) + (I - <) fIx;)

s'(x i ) = mo

2
s'(t;)=h(/(xi)-f(xi d)-mo,

Proof: Using (4.4) we get for Xi I (;x(;x i

u=o, I, , n),

u= 1, 2, , n),

(i=O, I, , n),

U=I,2, ... ,n).

(4.6)

s(x)=(I-C,(x))f(xi Jl+CJx)f{xi)+(x-x, l-hiC,(x))mo. (4.7)

By direct calculations one obtains easily the formulae (4.6). I

We are now ready to state the announced convergence result.

THEOREM 4.2. LeI f E C(l). Then fi)r Ihe quadralic spline s E Sp(2, (»)

described by (4.5) the estimation

(4.8)

is valid.

Thus the above theorem says that we have a case of uniform convergence
s ---> I as h ---> °for any real mo and any (but fixed) f E C(l).

Prool In view of (4.7) we get for x, I (; X (; Xi

((X) - sIx) = (1 - Ci(x))(/(x) -fIx, I)) + Ci(x)(/(x) -f(x;))
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Therefore the statement (4.8) follows immediately because of 0:( Ci(x):( I,
and

x-x, for
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